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Geomagnetic Induced Current (GIC) blocking devices typically include a capacitor on the neutral grounding path
of wye-configured transformers. This type of GIC blocking device was designed as an effective countermeasure to
prevent possible damages caused on the power grid by geomagnetic storms, and by the slow-varying component
of a high-altitude electromagnetic pulse (HEMP). The insertion of a capacitor in the transformer neutral impedes
the establishment of GICs in lines terminated with wye-connected transformer windings. With the presence of a
capacitively grounded neutral, however, it becomes important to evaluate that no adverse effects are introduced
in the general grid operations. In this context, this study investigates the impact of GIC neutral blocking devices
on the functionality of distance protection relays for different values of transformer neutral blocking capacitors,
and at different transmission line voltages. This study was conducted with a real-time simulation platform, and
the simulations were performed by introducing a phase-to-ground fault at different line locations, and by
measuring the apparent impedance at the protection relay location. The results indicated that, for typical values
of capacitance considered for GIC neutral blocking devices, the distance protection relay model operates
properly, without requiring a modification of the relay settings.

1. Introduction

Geomagnetic induced current(GIC) blocking devices prevent the
adverse impact of quasi-dc currents on transmission line transformers
that can be induced by geomagnetic disturbances [1,2]. These devices
consist primarily of capacitors connected to the neutral of wye-con-
nected transformers [3]. The impact of quasi-dc induced currents on
transmission lines has been studied in relation to heat damage in
transformer windings [1,4-6], and malfunctions in protection relay
operations [7,8]. While GICs are characterized by short-duration peaks
windings and structural parts overheating do not pose a serious concern
[9]1, more persistent GICs can lead to serious thermal damages [3]. To
mitigate the GICs in large-scale power systems, line switching methods
based on algorithms were studied [10,11], and the proposed algorithms
optimized the switching strategy to minimize the effect of GICs. The
optimal placement of GIC neutral blocking devices (NBDs) was studied
considering equipment thermal limits, and power system operation

constraints were evaluated [12]. Also, the impact of GICs on voltage
fluctuations along the power system were studied by inserting
grounding small resistances in neutral points to restrain voltage fluc-
tuations in the power grid [131.

On the other hand, unlike heat-related damage, even a short-dura-
tion magnetic saturation of the transformer core may, in principle, lead
to abnormal levels of harmonics that are enough to impact the func-
tionality of distance relay protections. This issue was analyzed in [7,8],
and it was shown that no malfunction of distance relay operations oc-
curred, for a 500 kV transmission line. In [14] it was also shown that
distance relays operate normally in transmission lines with GIC NBDs
inserted, if the neutral grounding capacitance is greater than 1000 pF.

However, no dynamic analysis of fault apparent impedances has
been performed or published to date [7,8,14]. In this paper, a detailed
dynamic analysis was performed based on the simulation and plot of
the phase-to-ground fault apparent impedance detected by the distance
relay model implemented, and for different line lengths, and voltage
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Fig. 1. Transmission line without (1) and with (2) GIC NBDs.

Table 1
Positive and zero-sequence impedances for the transmission lines [17,18].

Phase to phase voltage Line length Positive and zero-sequence impedances of transmission lines per unit length
(kv1]
[km} rl xlz L by cy
(rlo) (xlp) (o) (bo) (co)
[Q/km] [Q/km] [H/km] [uS/km] [F/ km]
230 40.23 0.06095862 0.47715862 0.00126570 3.462 9,18398 x 10~ °
80.46 (0.2307241) {1.57280689) (0.00417200) (1.906) (5.05560 x 10~%)
160.94
345 40.23 0.03295172 0.48451821 0.00128522 3.469 9.20259 x 10°°
80.46 (0.31560913) (1.18080586) (0.00313218) (2.529) (6.70916 x 10™%)
160.94

rl;, xl3, ¢ positive sequence series resistance, reactance and capacitance per unit length (p.u.l.), respectively.
rly, xly, cot Zero sequence series resistance, reactance and capacitance per unit length (p.u.l.), respectively.

Table 2
Zero-sequence current compensation factors Ko for different cases of trans-
mission lines.

Setting  Line length Phase to Phase  Zero-sequence current compensation

# Voltage factors

— [kV]

(km] [miles] Magnitude Angle

[Degrees]

1 40.23 25 230 0.768 —1.536
2 80.46 50 -1.521
3 160.94 100 —-1.527
4 40.23 25 345 0.516 —18.183
5 80.46 50 —18.211
6 160.94 100 —18.208

levels, leading to variations in line source impedance ratios (SIR).
The distance sensing function of protection relays (mho relays) is

commonly set by referring to a R-X diagram. This diagram represents

the variation over time of the impedance of the transmission line [15]

at the relay location (apparent impedance). The protection intervenes
when the measured apparent impedance falls within an established
circle in the R—X plane (e.g. as a result of a fault) [ 6]. In this study, the
path of apparent impedances in the R-X plane during a phase-to-ground
fault was compared with and without GIC NBDs inserted, and for dif-
ferent capacitance and SIR values.

2. The test scenario

The power system scenario was simulated with a real-time simu-
lator. Distance protection operations for 230 and 345 kV transmission
lines in a radial power system with a length of 25, 50 and 100 miles
were considered. The 230 and 345kV impedance parameters were
collected from real transmission lines [17,18]. Three different capaci-
tance values for the GIC NBDs were tested: 2650 uF (corresponding to
1-ohm reactance at 60 Hz), 265 uF, and 26.5 yF. The last value was
purposely chosen as an extreme case, but it is too small for practical
applications. A case without GIC NBDs provided the reference for the
value of fault apparent impedances seen by the distance protection
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Fig. 2. RT-LAB Block to compute the phase-to-ground fault apparent impedance (e.g. for the 230kV transmission line).
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Fig. 3. Flowchart of recommended protection schemes for short, medium and long transmission lines.

relays. The tests were performed for a phase-to-ground fault, that is the
most common fault in power transmission lines [19]. The two fault
locations cases were set at 10 and 100% of the line length, as measured
from the relay location. In distance relays, Zone 1 and 2 are usually set
at 80 and 120% of the impedance of the transmission line length, re-
spectively [20]. Because Zone 2 represents the limit to detect the faults
inside of the transmission line, only Zone 2 was plotted with the phase-
to-ground apparent impedance paths (represented by circles in the R—X
diagram, for instance as shown in Figs. 7-10). Following the onset of a
phase-to-ground fault, the model shows the path of the apparent im-
pedance progressing towards the interior of the reference circle in the
R-X diagram. In this study, the mho relay model needed to operate

properly while the GIC NBDs are inserted, and the SIRs for both 230 and
345kV lines during the phase-to-ground fault were compared with and
without GIC NBDs.

3. Methodology
3.1. The power system

The power system was simulated by the network shown in Fig. 1.
This network includes one utility source, two three-phase delta-wye
transformers, one transmission line (considered, separately for both the
230 and 345 kV cases) and a load. The network configuration was based
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Fig. 5. Currents (A) and phase-to-neutral voltages (B) for the ZAG_10%_25_230_2650 test.

on a radial power system. The transmission lines were simulated with a
MATLAB® three-phase PI section line block. This model consisted of one
set of resistor-inductor series elements connected between input and
output terminals, and two sets of shunt capacitances lumped at both
ends of the line. The transmission line extremes were connected to one
three-phase transformer. The delta- wye transformers were simulated
with a MATLAB® three-phase two-winding transformer block. This
model implemented a three-phase transformer by using single-phase
transformers. The GIC NBDs were connected to the wye neutral winding
of three-phase transformers. A switch near the load allowed to test the
effect of inserting the GIC NBDs (with three options: 2650/265/
26.5 pF) in place of the direct grounding option. This allowed to con-
sider the different cases comparing the line apparent impedance

changes resulting from a phase-to-ground fault.

In this study, the RT-LAB® and MATLAB® software tools were used
to simulate a transmission line, using an OP4510 real-time simulator.
The transmission line was simulated with “x line model” block, the
values positive and zero-sequence impedances per unit length, for both
cases of 230 and 345 kV that were considered, are shown in Table 1.

3.2. Phase-to-ground fault apparent impedance

The distance protection relays operate based on the measure of the
apparent impedances to detect faults in transmission lines. Considering
phase A, for instance, the phase-to-ground fault apparent impedance Z,,
is computed based on the instantaneous voltages and currents as [21]:
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Va -
L + Ko (3I)

Va
L+ Ko+ L+ L)

“ m
where Z,, is the A phase-to-ground fault apparent impedance, V,, is the
A phase-to-neutral voltage, I, is the A phase current (and similarly for I,
and I), Iy = (I,+ I + I.)/3 is the zero-sequence current, and Kp is the
zero-sequence current compensation factor given by [21]

Zro — 21

K, =
°T 3z,

2)

In (2) Zpp and Z;; are, respectively, the zero- and positive-sequence
impedances of the transmission line, expressed (in standard complex
notation with i as the imaginary unit) as

Zp=h x D+ i x 1) 3

C))

where ! is the length of the transmission line, rl; and rl are the positive-
and zero-sequence per unit length (p.u.L.), respectively, xI; and xl, are
the positive and zero-sequence series reactance (p.u.l.), respectively.

Kp can be then computed from (2), (3) and (4), and with iy, xl;, rlp
and xlp as defined Table 1. Examples for the K, values computed for 25,
50 and 100 miles transmission line lengths, and at 230 and 345kV are
shown in Table 2.

Zig=(rlg X D) + i(xlg x 1)

The phase-to-ground fault apparent impedance was computed by
implementing the definition (1) in RT-LAB®, and using the in-
stantaneous values for the phase-to-neutral voltages and phase currents
simulated in the model. Fig. 2 shows the actual RT-LAB® implementa-
tion scheme, that can also be used without modifications for a hard-
ware-in-the-loop, real-time simulation, by simply replacing the simu-
lated relay block in Fig. 1 with an actual relay unit connected to the
0OP4510.

The RT-LAB Block to compute the phase-to-ground fault apparent
impedance is shown in Fig. 2. The phase-to-ground fault apparent im-
pedance was computed as in (1) as in the RT-LAB block implementation
of Fig. 2. This RT-LAB Block collected the A phase-to-neutral voltage at
Bus 1 (Fig. 1), and A, B and C phase currents at Breaker (Fig. 1). Before
running the simulation tests, this RT-LAB Block was set with the zero
sequence compensation factors K, for each transmission line, based on
Table 2. The magnitude and angle of the phase-to-ground fault apparent
impedance were plotted while the simulation was running and were
recorded to compare the results with and without the blocking capa-
citors (2650 pF, 265 UF and 26.5 pF) inserted on the neutral transfor-
mers.
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3.3. Source-to-line impedance ratio

In distance protection relays, the transmission line length is defined
by the source-to-line impedance ratio (SIR) [22,23] that is used to de-
termine the protection schemes. The SIR is the preferred method to
classify the electrical length of transmission lines to select the proper
distance protection relay settings.

The SIR can be computed with a short circuit condition at the line
termination [23], as it refers to a realistic condition to which a distance
relay may be exposed. By referring to phase A (analogous definitions
will apply to B and C phases), the magnitude of the source impedance
for a phase to ground fault (Zs ;) was calculated by the primary vol-
tage drop from the source to the relay location (Vgza), divided by the
primary current (Iz4) at the relay for a fault at remote bus [23]:

Vs
1Zs 40l = =24

Ira (3

In (5) Vgsra is computed as the difference between the nominal
phase-to-ground voltage Vpp.s and the actual measured phase-to-

neutral voltage at the relay location Vj:
Vsra = Vphasz —Va (6)

Ip, is the relay current computed for the phase-to-ground fault ap-
parent impedance, as in the denominator in (1), but represented by the
magnitudes of primary values. The relay current for phase-to-ground
fault case is expressed by

ra=Ia+ Kol (Jg+ g+ Ic) (7)

By applying (6) and (7) in (5), the magnitude of the source impedance
for the phase-to-ground fault loop Zs 4 can be written as

Vphase - VA
L+ Kyl (Ig + Iz + 1) 8)

|Zs 46! =

The SIR for the phase-to-ground fault case, SIR4, is then the ratio of
the magnitude of source impedance Zg, and the magnitude of the
positive sequence impedance of the transmission line, and it is ex-
pressed according to [23]:
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Therefore, by replacing (8) in (9), it is found:
|4 -V,
SIRAG = phase A
Zpl [+ 1Kol (Iy + Ig + Ic) ] (10)

A short line may pose a challenge in terms of protection settings
because it makes it difficult for the relay to differentiate between a fault
inside (in-zone) and outside (out-of-zone) at a given distance protection
zone [22]. Therefore, distance protection guidelines provide the setups
for short lines that are defined to detect the line in-zone faults [24-26].
The setups for medium and long lines are defined to detect the line in-
zone and out-of-zone faults. The recommended protection schemes for
distance relays depend on whether transmission lines are classified as
short, medium or long [22,24]. Fig. 3 shows a flowchart of re-
commended protection schemes for short, medium and long transmis-
sion lines.

In the flowchart of Fig. 3, the SIR for the phase-to-ground fault was
computed as in (10) as in the RT-LAB block implementation of Fig. 4. In
this case the magnitudes of primary values of the phase currents and the
phase-to-neutral voltages (from the Breaker and Bus 1 of Fig. 1) pro-
vided the required magnitude values in (10). The RMS blocks (Fig. 4)
computed the true root mean square value of the input signal over a
running average window of one cycle.

4. Results

The phase-to-ground fault apparent impedances and the source
impedance ratios for the phase-to-ground fault loop were computed to

assess the impact on distance protection operations, for 230 and 345 kV
transmission lines. The simulations were performed with and without
the blocking capacitors (2650 uF, 265 uF and 26.5 pF) inserted on the
neutral of both transformers on each side of the transmission line. The
test results were recorded by an “OpWriteFile” block, and analyzed in
MATLAB®. The test runs (including a pre-fault interval) considered a
total simulated time of 0.25 s, with the fault occurring at 0.083 s (5/60
cycles). All tests were run with an OP4510 real-time simulator set with
a 50 ps time step. Figs. 5 and 6 show the results of a test with the phase-
to-ground fault apparent impedance (ZAG) located at 10 % of the 25-
mile long line, at 230kV, and with the 2650 yF GIC NBD (as summar-
ized by the label “ZAG_10%_25_230_2650". In this case, the results were
plotted from 0.066 to 0.115 s to observe in detail the transients shortly
after the phase-to-ground fault at 0.083 s. The A, B and C phase currents
and phase-to-neutral voltages are shown in Fig. 5A and B, respectively.
The phase currents and voltages waveforms were similar with and
without GIC NBDs.

The magnitude (red) and angle (green) for the phase-to-ground fault
apparent impedance in the radial power system with GIC NBDs
(2650 yF) are shown in Fig. 6A and B, respectively. The magnitude and
angle (black) for the phase-to-ground fault apparent impedance in the
radial power system without GIC NBDs are also shown. In Tig. 6, the
magnitude and angle showed virtually identical patterns for the phase-
to-ground fault apparent impedances with and without GIC NBDs.

In Fig. 7, the results for the ZAG_10%_25_230_2650 test are plotted.
The paths for the phase-to-ground fault apparent impedances with and
without GIC NBDs are in red and black, respectively. In Fig. 7A (zoom-
out), the whole path of the phase-to-ground fault apparent impedance is
shown. A detail of the path of the phase-to-ground fault apparent
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impedance reaching the internal area of the R-X circle, when the dis-
tance relay operates, is shown in Fig. 7B (zoom-in). In Fig. 7A and B, the
red and black paths showed virtually identical patterns, indicating that
the same behavior for the measured phase-to-ground fault apparent
impedances occurs with and without GIC NBDs.

The tests for the 230 kV transmission lines are reported in Fig. 8 A
and B, that illustrate the phase-to-ground fault apparent impedances
paths at 10 and 100 % of line lengths, for the 25, 50 and 100-mile long
transmission lines, and using a 2650 pF GIC NBD. In the R-X diagrams,
are the distance protection zones of 120 % (Zone 2) are shown as red,
blue and pink circles for the 25, 50 and 100-mile length, respectively.
These paths are the measured phase-to-ground fault apparent im-
pedances during the pre-fault (from 0 to 0.083s.) and fault (from 0.083
to 0.25s.) states. The black curves are the paths of the phase-to-ground
fault apparent impedances for the transmission lines without GIC NBDs
(referenced values). The phase-to-ground fault apparent impedances for
the 25, 50 and 100-mile long transmission lines at 230 kV showed si-
milar behaviors with and without 2650 pF GIC NBDs.

Similarly, Fig. 9 A and B refer to the 345kV transmission line,
showing again the phase-to-ground fault apparent impedances at 10
and 100% of line lengths for the 25, 50 and 100-mile long transmission
lines, respectively, with 2650 uF GIC NBDs. The circles and the ap-
parent impedance paths in the R-X diagrams are the same as described
in Fig. 8. As for the 230KV case, the phase-to-ground fault apparent
impedances for the 25, 50 and 100-mile long transmission lines at
345 kV showed similar behaviors with and without 2650 pF GIC NBDs.

In this study, non-typical values of GIC NBD capacitance (26.5 and
265 UF) were also tested and compared with conventional grounding,
for 50-mile long at 230 and 345 kV transmission lines (Fig. 10). In the
R-X diagrams, the blue circle represents 120% of the transmission line
length (Zone 2).

These results indicated that performance was better with the larger
capacitors (2650 and 265 pF) than with the smaller 26.5 puF ones. In
fact, the 26.5 pF case shows a pronounced difference compared with the
conventional grounding, as can be seen by observing the different paths
for the phase-to-ground fault apparent impedances. However, mho
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Fig. 10. Phase-to-ground fault apparent impedances for 230 kV (A) and 345XV (B) transmission lines of 50 miles length without and with 26.5 and 265 pF GIC NBDs.

Table 3
Phase-to-ground fault apparent impedance for 230 and 345 kV lines with and without GIC NBDs.
Line Voltage Level 230 kV Line 345 kV Line
Line Length in km 16094 8046 4023 16094 8046 4023
[miles] [100] [50] [25] [100] [50] [25]
GIC NBDs {F] 2650 2650 265 265 2650 2650 2650 265 265 2650
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Fig. 11. Source impedance ratio for phase-to-ground fault at 230 and 345 kV transmission lines of 50 miles length without and with 26.5, 265 and 2650 pF GIC NBDs.

distance relays are expected to trip anyway, because the phase-to-
ground apparent impedance path end inside the blue circle (that in-
dicates the operation zone for the distance relay). It should be noted
that the 26.5 pF case, however, is far from typical values required for
actual installations, and represents a limit scenario considered as a
verification that the model can capture the proper dynamics.

In Fig. 10, the oscillation of the phase-to-ground fault apparent
impedance for faults located at 100% of the transmission line length
were due to the capacitance added along the transmission line. This was
because currents and voltages at fault states were superimposed on the
fundamental frequency component due to the capacitance of the
transmission line. This harmonic component can cause the oscillation of
the distance measurements [27], and it can be filtered from the phase-
to-ground fault apparent impedance for faults located at 100% of the
transmission line length by implementing typical microprocessor relay
filtering [28,29].

Figs. 8-10 show how the paths of the phase-to-ground fault ap-
parent impedances, with GIC NBDs with different capacitance values,
compare with the conventional case of conductor grounding. As are
summarized in Table 3, these comparisons indicate that the paths for
2650, 265 and 26.5 pF capacitors show, respectively, a good, fair, and
poor matching, with the path of the direct grounding case. However, all
the impedance path terminations, corresponding to the permanent fault
state, are located inside the circle in the R-X diagram, thus demon-
strating that the mho distance relays are expected to provide the re-
quired protection in all cases.

The SIRs for the phase-to-ground fault (phase A) were computed
according to Eq. (10), and the results for the cases of 50-mile length, at
230 and 345 kV and with and without 26.5, 265 and 2650 uF GIC NBDs
are shown in Fig. 11. The SIRs curves with direct grounding, 265 and
2650 uF show minor differences. However, the SIR with a 26.5 uF GIC
NBD had appreciable differences compared with the direct grounding,
showing a 49% variation for the 230kV case, and 16% for the 345 kV.
In the 230kV case, the SIRs with the 26.5 uF capacitor (red curve)
became smaller than 4 Q (the SIR defining threshold to distinguish a
shorth from a medium transmission line). Thus, the same 50-mile line
was considered a medium line length with the 26.5 uF GIC NBD, while
it was a short line length with larger capacitors or direct grounding.
Therefore, protection schemes (Fig. 3) should be chosen accordingly.
Again, it should be recalled that the 26.5 uF case does not represent a
choice that would be considered in actual GIC protection installations,
and it is here discussed to provide a reference for the lower limit of the
capacitance value range.

The results of this study were validated in a previous publication [§]
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that investigated the operation of distance relays at IEEE-39 bus system
with GIC NBDs, implemented by a real-time simulator with hardware
in-the-loop. The previous study [8] showed that distance relays were
not affected by the insertion of GIC NBDs. On the other hand, a report
[30] that discussed the early development and testing of GIC NBDs did
not report fault events. Another publication [31] addressed that
transmission line-to-ground faults were not reported during Geomag-
netic Disturbances (GMDs) that might have triggered the updated en-
gineering system model to test fault protection functions [31]. There-
fore, there are no protection fault data on the performance of the
updated engineering system model during potentially damaging be-
cause of GMDs.

5. Conclusions

This study, conducted on a real-time power system simulator, pro-
vided a satisfactory evaluation of the impact of GIC neutral blocking
devices on mho distance relay operations for different values of trans-
former neutral capacitors, and for different transmission line voltages.
In the simulations, phase-to-ground fault scenarios at different line lo-
cations were considered, and the apparent impedance evolution during
the transient was measured at the relay location. The present model, by
design, can also be used without any modifications for a hardware in-
the-loop distance relay implementation with the OP4510 simulator.

The model was used to study the impact of insertion of GIC NBDs on
distance protection relay operations. The most realistic case uses
2650 PF capacitors, and resulted in no negative impact on the ability to
operate the distance relay properly, in response to a phase-to-ground
fault. The tests were performed for 230 and 345 kV transmission lines of
25, 50 and 100 miles in length. The R~X diagram paths were compared
for the phase-to-ground fault apparent impedances, with and without
GIC NBDs. Compared to direct grounding, no meaningful differences in
the apparent impedance path occurred with the 2650 uF GIC NBD in-
sertion (Figs. 8 and 9). In addition, 265 and 26.5 UF GIC NBD tests were
also performed, now only for the 50-mile transmission line length (the
most sensitive case) and at both 230 and 345kV. As summarized in
Table 3, the comparison of phase-to-ground fault apparent impedance
paths with and without GIC NBDs at transient fault state showed, good,
fair, and poor path match, respectively for 2650, 265, and 26.5 yF ca-
pacitors. However, for all the three values of capacitance considered,
the termination of impedance path, corresponding to the permanent
fault state, was always inside the circle in the R-X diagram, demon-
strating that mho distance relays are expected to operate properly in
any of the cases considered.
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The SIRs for a phase-to-ground fault, of 50 miles length at 230 and
345kV were also computed for the same three different capacitor va-
lues (Fig. 11). The 26.5 pF GIC NBD showed a pronounced difference in
the computed SIRs compared with the other capacitance values. The
insertion of this relatively small capacitance (for the 50-mile case under
consideration) resulted in a change in the qualification of the line
length in terms of SIR from “small” to “medium”, thus requiring a
different relay setting. This case, however, is far from typical design
values for actual installations, and represents a worst-case, limit sce-
nario that was considered to verify that the model can capture the ex-
pected dynamics.

This study outlined a general methodology that can be applied in a
wide variety of cases to analyze the feasibility of GIC NBDs protections
in complex grid layouts. With a continuous monitoring of GIC NBDs
early installations, additional data on the dynamic response during fault
on distance protection relays can be made available. This data can then
be used to benchmark the results obtained with the proposed metho-
dology, thus providing the necessary confidence for a larger-scale in-
stallation of GIC-NBDs. In the future, the collection of protection fault
data on the updated electrical engineering systems during potentially
damaging because of GMDs will be crucial to study the performance of
distance relays.

Finally, as an avenue for further developments, the utilization of
adaptive distance protection schemes can be considered to enhance the
feasibility of GIC NBDs installations. For instance, that may result
beneficial in cases where the blocking capacitance leads to a change in
the SIR qualification of the line length, thus requiring switching to
different relay settings. The possible occurrence of these conditions,
aside from the use of exceedingly small capacitances (as was shown in
this work), could be perhaps found in a more complex grid topology
than the basic case here considered.
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